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Motivation
various origins of the Heisenberg(–Weyl) group

In 1980 paper1 Roger Howe wrote:

An investigator might be able to get what he wanted out of a situ-
ation while overlooking the extra structure imposed by the Heisen-
berg group, structure which might enable him to get much more.

Howe’s suggestion is still valuable today.

As an illustration: the basic analytic operators of differentiation d
dx and

multiplication by x in satisfy to the same Heisenberg commutation
relations [Q,P] = i h as observables of momentum and coordinate in
quantum mechanics.

We shall start from the general properties the Heisenberg group and its
representations. Many important applications will follow.

1Howe, “On the Role of the Heisenberg Group in Harmonic Analysis”, 1980.



The Symplectic Form

The following notion is central for Hamiltonian mechanics.

Definition 1.
The symplectic form ω on R2n is a function of two vectors such that:

ω(x,y; x ′,y ′) = xy ′ − x ′y, where (x,y), (x ′,y ′) ∈ R2n, (1)

Exercise 2.
Check the following properties:

1 ω is anti-symmetric ω(x,y; x ′,y ′) = −ω(x ′,y ′; x,y).

2 ω is bilinear:

ω(x,y;αx ′,αy ′) = αω(x,y; x ′,y ′),

ω(x,y; x ′ + x ′′,y ′ + y ′′) = ω(x,y; x ′,y ′) +ω(x,y; x ′′,y ′′).

For complex vectors z, w ∈ Cn, n > 1 complex inner product is:

zw̄ = z1w̄1 + z2w̄2 + · · ·+ znw̄n, (2)

where z = (z1, z2, . . . , zn), w = (w1,w2, . . . ,wn).



The Symplectic Form
Further properties

Exercise 3.

1 Let z = x+ iy and w = x ′ + iy ′ then ω can be expressed through the
complex inner product (2) as ω(x,y; x ′,y ′) = −=(zw̄).

2 The symplectic form on R2 is equal to det

(
x x ′

y y ′

)
. Consequently, it

vanishes if and only if (x,y) and (x ′,y ′) are collinear.

3 Let A ∈ SL2(R) be a real 2× 2 matrix with the unit determinant.
Define: (

x̃

ỹ

)
= A

(
x

y

)
and

(
x̃ ′

ỹ ′

)
= A

(
x ′

y ′

)
. (3)

Then, ω(x̃, ỹ; x̃ ′, ỹ ′) = ω(x,y; x ′,y ′). Moreover, the symplectic
group Sp(2)—the set of all linear transformations of R2 preserving
ω—coincides with SL2(R).



The Heisenberg group
Definition

Now we define the main object of our consideration.

Definition 4.
An element of the n-dimensional Heisenberg group Hn is
(s, x,y) ∈ R2n+1, where s ∈ R and x, y ∈ Rn. The group law on Hn is
given as follows:

(s, x,y) · (s ′, x ′,y ′) = (s+ s ′ + 1
2ω(x,y; x ′,y ′), x+ x ′,y+ y ′), (4)

where ω the symplectic form.

Exercise 5.
For the Heisenberg group Hn, check that:

1 The unit is (0, 0, 0) and the inverse (s, x,y)−1 = (−s,−x,−y).

2 It is a non-commutative, the centre of Hn is:

Z = {(s, 0, 0) ∈ Hn, s ∈ R}. (5)
3 The group law is continuous in the topology of R2n+1, so we have a

Lie group.



Alternative group laws I
for the Heisenberg group

It is convenient to have several alternative forms to parameterise the
Heisenberg group or express its group law.

1 Introduce complexified coordinates (s, z) on H1 with z = x+ iy.
Then the group law can be written as:

(s, z) · (s ′, z ′) = (s+ s ′ + 1
2=(z

′z̄), z+ z ′).

2 Show that the set R3 with the group law

(s, x,y) ∗ (s ′, x ′,y ′) = (s+ s ′ + xy ′, x+ x ′,y+ y ′) (6)

is isomorphic to the Heisenberg group H1. It is called the polarised
Heisenberg group H1

p (aka canonical coordinates on H1).
Hint: Use the explicit form of the homomorphism H1 → H1

p as

(s, x,y) 7→ (s+ 1
2xy, x,y).� Check that inverse element on polarised

Heisenberg group is (s, x,y)−1 = (−s+ xy,−x,−y).



Alternative group laws II
for the Heisenberg group

3 Define the map φ : H1 →M3(R) by

φ(s, x,y) =

1 x s+ 1
2xy

0 1 y

0 0 1

 . (7)

This is a group homomorphism from H1 to the group of 3× 3
matrices with the unit determinant and the matrix multiplication as
the group operation. Write also a group homomorphism from the
polarised Heisenberg group to M3(R).

4 Expand the above items from this Exercise to Hn.



The Weyl algebra
The key idea of analysis is a linearization of complicated object in small
neighbourhoods. Applied to Lie groups it leads to the Lie algebras.
The Lie algebra of the Heisenberg group h1 is also called Weyl algebra.
From the general theory we know, that h1 is a three-dimensional real
vector space, thus, it can be identified as a set with the group H1 ∼ R3

itself.
There are several standard possibilities to realise h1:

1 Generators X of one-parameter subgroups: x(t) = exp(Xt), t ∈ R.
2 Tangent vectors to the group at the group unit.
3 Invariant vector fields (first-order differential operators) on the

group.

There is the important exponential map between a Lie algebra and
respective Lie group. The exponent function can be defined in any
topological algebra as the sum of the following series:

exp(tX) =

∞∑
n=0

(tX)n

n!
. (8)



Generators of subgroups
and the exponential map

1 Matrices from (7) are created by the following exponential map (8):

exp

0 x s

0 0 y

0 0 0

 =

1 x s+ 1
2xy

0 1 y

0 0 1

 . (9)

Thus h1 isomorphic to the vector space of matrices in the left-hand
side. We can define the explicit identification exp : h1 → H1 by (9),
which is also known as the exponential coordinates on H1.

2 Define the basis of h1:

S =

0 0 1
0 0 0
0 0 0

 , X =

0 1 0
0 0 0
0 0 0

 , Y =

0 0 0
0 0 1
0 0 0

 . (10)

Write the one-parameter subgroups of H1 generated by S, X and Y.



Invariant vector fields
A (continuous) one-parameter subgroup is a continuous group
homomorphism F from (R,+) to Hn:

F(t+ t ′) = F(t) · F(t ′).

We can calculate the left and right derived action at any point g ∈ Hn:

d(F(−t) · g)
dt

∣∣∣∣
t=0

and
d(g · F(t))

dt

∣∣∣∣
t=0

. (11)

1 Check that the following vector fields on H1 are left (right) invariant:

Sl(r) = ±∂s, Xl(r) = ±∂x − 1
2y∂s, Yl(r) = ±∂y + 1

2x∂s. (12)

Show, that they are linearly independent and, thus, are bases of the
Lie algebra h1 (in two different realizations).

2 Find one-parameter groups of right (left) shifts on H1 generated by
these vector fields.



Commutator I
The principal operation on a Lie algebra, besides the linear structure, is
the Lie bracket—a bi-linear, anti-symmetric form with the Jacoby
identity:

[[A,B],C] + [[B,C],A] + [[C,A],B] = 0.

In the above exercises, as in any algebra, we can define the Lie bracket as
the commutator [A,B] = AB− BA, e.g. for matrices and vector fields
through the corresponding algebraic operations in these algebras.

1 Check that bases from (10) and (12) satisfy the Heisenberg
commutator relation

[Xl(r), Yl(r)] = Sl(r) (13)

and all other commutators vanishing. More generally:

[A,A ′] = ω(x,y; x ′,y ′)S, where A(′) = s(′)S+ x(′)X+ y(′)Y, (14)

and ω is the symplectic form.



Commutator II

2 Show that any second (and, thus, any higher) commutator [[A,B],C]
on h1 vanishes. This property is encoded in the statement “the
Heisenberg group is a step 2 nilpotent Lie group”.

3 Check the formula

exp(A) exp(B) = exp(A+ B+ 1
2 [A,B]), where A,B ∈ h1. (15)

The formula is also true for any step 2 nilpotent Lie group and is a
particular case of the Baker–Campbell–Hausdorff formula. Hint: In

the case of H1 you can use the explicit form of the exponential map (9).�
4 Define the vector space decomposition of the Lie algebra:

h1 = V0 ⊕ V1, such that V0 = [V1,V1] = [h1, h1]. (16)

Explicitly: V1 = {(0, x,y) : x,y ∈ R} and V0 = Z = {(s, 0, 0), s ∈ R}.



Automorphisms
of the Heisenberg group

Erlangen programme suggests investigation of invariants under group
action. This recipe can be applied recursively to groups themselves.
Transformations of a group which preserve its structure are called group
automorphisms. Automorphisms of H1 are compositions of the following:

1 Inner automorphisms or conjugation with (s, x,y) ∈ H1:

(s ′, x ′,y ′) 7→ (s, x,y) · (s ′, x ′,y ′) · (s, x,y)−1 (17)

= (s ′ +ω(x,y; x ′,y ′), x ′,y ′) = (s ′ + xy ′ − x ′y, x ′,y ′).

2 Symplectic maps (s, x,y) 7→ (s, x̃, ỹ), where

(
x̃

ỹ

)
= A

(
x

y

)
with A

from the symplectic group Sp(2) ∼ SL2(R), see Exercise 3.3.

3 Dilations: (s, x,y) 7→ (r2s, rx, ry) for a positive real r.

4 Inversion: (s, x,y) 7→ (−s,y, x).

The last three types of transformations are outer automorphisms.



The Scrödinger group
For future use we will need S̃p(2) which is the double cover of Sp(2).
Recall, the last group isomorphic to SL2(R).
We can build the semidirect product G = H1 o S̃p(2) with the standard
group law for semidirect products:

(h,g) ∗ (h ′,g ′) = (h ∗ g(h ′),g ∗ g ′), (18)

where h, h ′ ∈ H1, g,g ′ ∈ S̃p(2). Here the stars denote the respective
group operations while the action g(h ′) is defined as the composition of
the projection map S̃p(2)→ Sp(2) and the action (3).
This group is sometimes called the Schrödinger group (or Jacoby group2)
and it is the maximal kinematical invariance group of both the free
Schrödinger equation and the quantum harmonic oscillator. It is also of
interest for paraxial beams and quantum optics.
It is also the full group of symmetries of the θ-function with applications
in number theory.3

2Berndt, Representations of linear groups, 2007.
3Ibid., 2007.



Subgroups
and Homogeneous Spaces

Let G be a Lie group and H be its closed subgroup.
The homogeneous space G/H from the equivalence relation: g ′ ∼ g iff
g ′ = gh, h ∈ H. The natural projection p : G→ G/H puts g ∈ G into its
equivalence class.
A section s : G/H→ G is a right inverse of p, i.e. p ◦ s is an identity map
on G/H. Then, the left action of G on itself Λ(g) : g ′ 7→ g−1 ∗ g ′
generates the action on G/H:

g : x 7→ p(g−1 ∗ s(x)), or graphically

G

p

��

g−1∗ // G

p

��
G/H

s

OO

g−1· // G/H

s

OO

(19)

We want to classify up to certain equivalences all possible
H1–homogeneous spaces. According to the diagram we will look
subgroups of H1, staring from continuous and commutative ones.



1D Subgroups of H1

and 2D homogeneous spaces

One-dimensional continuous subgroups of H1 can be classified up to
group automorphism. Two one-dimensional subgroups of H1 are the
centre Z (5) and

Hx = {(0, t, 0) ∈ H1, t ∈ R}. (20)

Exercise 6.
Show that:

1 There is no an automorphism which maps Z to Hx.

2 For any one-parameter continuous subgroup of H1 there is an
automorphism which maps it either to Z or Hx.

3 The classification of one-parameter subgroups can be based on their
infinitesimal generators from the Weyl algebra.



1D Subgroups of H1

and 2D homogeneous spaces

Next, we wish to describe the respective homogeneous spaces and actions
of H1 on them.

Exercise 7.
Check that:

1 The H1-action on H1/Z ∼ {(x,y) : x,y ∈ R} is:

(s, x,y) : (x ′,y ′) 7→ (x+ x ′,y+ y ′). (21)

Hint: The decomposition (s, x,y) = (0, x,y) ∗ (s, 0, 0) defines maps:

p : (s ′, x ′,y ′) 7→ (x ′,y ′) and s : (x ′,y ′) 7→ (0, x ′,y ′).�
2 The H1-action on H1/Hx ∼ {(s,y) : s,y ∈ R} is:

(s, x,y) : (s ′,y ′) 7→ (s+ s ′ + xy ′ + 1
2xy,y+ y ′). (22)

Hint: The decomposition (s, x,y) = (s+ 1
2xy, 0,y) ∗ (0, x, 0) defines maps:

p : (s ′, x ′,y ′) 7→ (s ′ + 1
2x
′y ′,y ′) and s : (s ′,y ′) 7→ (s ′, 0,y ′).�

3 Calculate the derived action similar to (11).



2D Subgroups of H1

and 1D homogeneous spaces

The classification of two-dimensional subgroups is as follows:

Exercise 8.
Show that:

1 For any two-dimensional continuous subgroup of H1 there is an
automorphism of H1 which maps the subgroup to

H ′x = {(s, 0,y) ∈ H1, s,y ∈ R}.

2 H1-action on H1/H ′x is

(s, x,y) : x ′ 7→ x+ x ′. (23)

Hint: The decomposition (s, x,y) = (0, x, 0) ∗ (s− 1
2xy, 0,y) defines maps

p : (s ′, x ′,y ′) 7→ x ′ and s : x ′ 7→ (0, x ′, 0).�
3 Calculate the derived action similar to (11).

Actions (21) and (23) are simple shifts. Nevertheless, the associated
representations of the Heisenberg group will be much more interesting.



A discrete subgroup of H1

The above subgroups were commutative and continuous. There is a
remarkable non-commutative discrete subgroup of H1. The discreteness
hides its non-commutativity in certain cases.

Exercise 9.

1 Show that the following set is a non-commutative discrete subgroup
of H1 or the polarised Heisenberg group H1

p:

Hd = {(s,n,k) : s ∈ R, n,k ∈ Z}. (24)

2 The homogeneous space H1
p/Hd can be identified with the torus

T2 = {(u, v) : u, v ∈ [0, 1)} through the following decomposition:

(s, x,y) = (0, {x}, {y}) ∗ (s− {x}[y], [x], [y]), (25)

where [x] and {x} are the integer and fractional parts of x.

3 The H1-action on H1
p/Hd ∼ T2 is a “periodic” shift:

(s, x,y) : (u, v) 7→ ({u+ x}, {v+ y}), (26)

for the p : (s, x,y) 7→ ({x}, {y}) and s : (u, v) 7→ (0,u, v).



Group Representations

Definition 10 (traditional).

A (linear) representation ρ of a group G is a group homomorphism
ρ : G→ B(V) from G to (bounded) linear operators on a space V:

ρ(gg ′) = ρ(g)ρ(g ′).

Informally: A representation of G is an introduction of an operation of
addition on G, which is compatible with group multiplication.

Exercise 11.
Check that the following are group representations:

1 Let G = (R,+), V = C, ρ(x) = eiax, a ∈ R. It is a 1D-representation
called a character.

2 Let G = (R,+), V = L2(R), representation by shifts:
[ρ(x)f](t) = f(x+ t) is infinite-dimensional.

3 For any group G shifts f(g ′) 7→ f(g−1g ′) and f(g ′) 7→ f(g ′g) are the
left and right regular representations respectively.



Continuous Representations of
Topological Groups

A representation is a map which respects the group structure. If we have
a topological group, it is natural to consider representations respecting
topology as well, that is representation which are continuous in some
topology. It is most common (and convenient!) to use the following type.

Definition 12.
A representation ρ of G in a vector space V is strong continuous if for
any convergent sequence (gn)→ g ∈ G and for any x ∈ V we have
‖ρ(gn)x− ρ(g)x‖ → 0.

Exercise 13.
Which representations from the previous Exercise 11 are strongly
continuous in a suitable topology?

From now, we consider strongly continuous representations only.



Decomposition of Representations

Definition 14.
A subspace U ⊂ V is called invariant if ρ(g)U ⊂ U for all g ∈ G. We can
always consider a restriction of ρ to any its invariant subspace. Such a
restriction is called subrepresentation.

Definition 15.
A representation is irreducible if the only closed invariant subspaces are
trivial (the whole V and {0}). Otherwise it is reducible.

The regular representation of (R,+) on V = L2(R) by shifts has closed
invariant subspaces, e.g. the Hardy space—space of all functions having
an analytic extension to the upper half-plane. So it is reducible. A
character (and any 1D-representation) is an irreducible representation.

Definition 16.
A representation is decomposable if V = V1 ⊕ V2, where V1 and V2 are
invariant.



Equivalence of Representations
Let ρ be a representation of a group G in a linear normed space E and
there is an isometric isomorphism U : E→ F.

Exercise 17.
Check that the map ρ1 : g 7→ Uρ(g)U−1, g ∈ G is a representation of G
in F. Show that, if ρ is continuous then the new representation is
continuous as well.

Obviously, the representations ρ and ρ1 are not essentially different. Two
such representations ρ1(g) = Uρ(g)U

−1 (ditto ρ1(g)U = Uρ(g)), g ∈ G
are called equivalent with an intertwining operator U.

Exercise 18 (Revising Exercise 11).

Let G = (R,+), E = F = L2(R) and [ρ1(x)f](t) = e
2πitxf(t) and

[ρ2(x)f](t) = f(x+ t). Check that, the Fourier transform:

[Ff](λ) =

∫
R
f(t) e−2πiλt dt

intertwines ρ1 and ρ2, that is Fρ2(x) = ρ1(x)F for all x ∈ R. Thus, ρ1

and ρ2 are equivalent.



Unitary Representations

The representation theory is much simpler if representing operators
belong to a nice class.

Definition 19.
A strongly continuous representation ρ of G in V is unitary if V is a
Hilbert space and all ρ(g), g ∈ G are unitary operators.

Exercise 20.
Define Hilbert spaces such that representations from the Exercise 11
become unitary.

One of the important properties of unitary representations is complete
reducibility. Namely, a representation in a normed space can be reducible
but indecomposable. However, any reducible unitary representation in a
Hilbert space H is decomposable: for any closed invariant subspace
F ⊂ H, the orthogonal complement F⊥ ⊂ H is again a closed invariant
subspace. Thus, H is a sum of two invariant subspaces: H = F⊕ F⊥.
We will consider unitary representations of Hn only.



Induced Representations
version on the group

Let G be a group, H its closed subgroup, χ be a character of H. A space
Lχ(G) of functions with the H-covariance property

F(gh) = χ(h)F(g), g ∈ G, h ∈ H (27)

is invariant under left G-shifts

Λ(g) : F(g ′) 7→ F(g−1g ′), g,g ′ ∈ G. (28)

The restriction of the left regular representation (28) to Lχ(G) is called
an induced representation from the character χ of the subgroup H.
In fact, an induction can be done from any representation of H, not only
a character. However, we do not need this generality in our course.
The covariance property (27) allows to recover the value F(g) from F(g ′)
for any g ′ in the equivalence class of g. Thus, we may push the
representation to the homogeneous space G/H.



Induced Representations
version on the homogeneous space

For the natural projection p : G→ X = G/H and its right inverse
s : X→ G, we define the map r : G→ H by:

r(g) = s(x)−1g for x = p(g), thus g = s(p(g))r(g). (29)

Define the lifting Lχ of a function f(x) on X = G/H to F(g) ∈ Lχ(G) and
its left inverse—the pulling PH : Lχ(G)→ L(X):

F(g) = [Lχf](g) = χ(r(g))f(p(g)), f(x) = [PHF] = F(s(x)) (30)

since [Lχf](g) satisfying (27) and PH ◦Lχ = I. The lifting transforms the
left regular representation (28) on Lχ(G) to the following action:

[ρχ(g)f](x) = χ(r(g−1 ∗ s(x)))f(g−1 ·x), from

Lχ(G)

PH
��

Λ(g) // Lχ(G)

PH
��

L(X)

Lχ

OO

ρχ(g) // L(X)

Lχ

OO
(31)

and using (19) to define x 7→ g−1 · x.
Informally: In the “decomposition” G ∼ (G/H)×H the part G/H acts in
functions’ domain, and H—in the range. Everything is used somewhere!



Induced Representations of H1 I

Here is some examples of induced representations. The choice of
characters will be discussed later.

1 For H = Z, the decomposition (s, x,y) = (0, x,y) ∗ (s, 0, 0) defines the
map r : H1 → Z is r(s, x,y) = (s, 0, 0). For the character
χ h(s, 0, 0) = e2πi hs, the representation of H1 on L2(R2) is, cf. (21):

[ρ h(s, x,y)f](x
′,y ′) = e2πi h(−s− 1

2ω(x,y;x ′y ′))f(x ′ − x,y ′ − y). (32)

This is the Fock–Segal–Bargmann (FSB) representation.

2 For H = Hx, the decomposition (s, x,y) = (s+ 1
2xy, 0,y) ∗ (0, x, 0)

defines the map r(s, x,y) = (0, x, 0). For the character
χ(0, x, 0) = e2πiqx, q ∈ R the representation H1 on L2(R2) as,
cf. (22):

[ρq(s, x,y)f](s
′,y ′) = e−2πiqxf(s ′ − s− xy ′ +

1

2
xy,y ′ − y). (33)



Induced Representations of H1 II
3 For H = H ′x = {(s, 0,y) ∈ H1}, the decomposition

(s, x,y) = (0, x, 0) ∗ (s− 1
2xy, 0,y) defines the map r : H1 → H ′x as

r(s, x,y) = (s− 1
2xy, 0,y).

For the character χ h(s, 0,y) = e2πi hs, the representation of H1 on
L2(R) is, cf. (23):

[ρ h(s, x,y)f](x
′) = exp(−πi h(2s− 2yx ′ + xy))) f(x ′ − x). (34)

This is one of forms of the Schrödinger representation of H1.

4 The above representations are intertwined with the left regular
representation as in (31) by:

[Lχf](s, x,y) = e
2πi hs ′f(x,y), [PZF](x,y) = F(0, x,y) , (35)

[Lχf](s, x,y) = e
2πiqxf(s,y), [PHxF](s,y) = F(s, 0,y) , (36)

[Lχf](s, x,y) = e
2πi h(s−xy/2)f(x), [PH ′xF](x) = F(0, x, 0) . (37)

for subgroups Z, Hx and H ′x, respectively. Check (27) for the image
spaces of corresponding lifting Lχ.



Induction from the Discrete Subgroup
For convenience, we use the polarised Heisenberg group H1

p with the
group law (6). For the above discrete subgroup
H = Hd = {(s ′,n,k) : s ′ ∈ R, n,k ∈ Z} take the character
χm(s ′,n,k) = e2πmis ′ , m ∈ Z, which kills the commutator of Hd. Then,
H-covariance F(gh) = χm(h)F(g) (27) for g = (s, x,y) and
h = (−xk,n,k) ∈ Hd implies:

F(s, x+ n,y+ k) = e−2πmixkF(s, x,y). (38)

That is, functions in Lχm(G) are periodic in x and quasi-periodic in y.
The respective map r : H1

p → Hd : (s, x,y) 7→ (s− {x}[y], [x], [y]), cf. (25).
Since m ∈ Z we note

χm(r(s, x,y)) = e2πmi(s−{x}[y]) = e2πmi(s−({x}+[x])[y]) = e2πmi(s−x[y]).

Thus, using the lifting Lχm we transfer the left group action to L(T2):

[ρmd (s, x,y)f](u, v) = e−2πmi(s+x{v−y}+u[v−y])f({u− x}, {v− y}) (39)

= e−2πmi(s+x(v−y)+u[v−y])f(u− x, v− y).

The last form treats f on L(T2) as double quasi-periodic on R2, cf. (38).



Equivalence of Induced Representations

We built many (but still not all possible!) representations of H1.
Are they essentially different?
We will show that any two above representations ρ h and ρ̃ h with the
same value of the parameter  h are unitary equivalent, namely there is a
unitary operator U intertwining them:

ρ h(g)U = Uρ̃ h(g), for all g ∈ G.

Specifically, for induced representations: recall the inner automorphisms
g̃ : g 7→ g̃−1gg̃ of any non-commutative group G by the adjoint action.
For a representation ρ of G the correspondence g 7→ ρ̃(g) := ρ(g̃−1gg̃) is
also a representation of G. It is easy to see that ρ̃ and ρ are equivalent
with the intertwining operator U = ρ(g̃), that is ρ(g)U = Uρ̃(g).
For the representations induced from a character, this observation leads
to the orbit method of Kirillov, which we are considering now.



Adjoint Representation
for a Matrix Group

Let G be a matrix group, i.e. subgroup and a smooth submanifold of
GLn(R).

g = Lie(G)—the Lie algebra of G, the tangent space Te(G) at unit e ∈ G.

A(g) : x 7→ gxg−1—G-action on itself by inner automorphisms. It fixes
the group unit e, thus generates a linear transformation of the tangent
space Te(G), which is identified with g.

A∗(g) : g 7→ g—the above derived map which is usually denoted by
Ad(g).

g 7→ Ad(g)—is called the adjoint representation of G.

Luckily, this construction can greatly simplified for matrix groups: the
adjoint representation is matrix conjugation:

Ad(g)B = gBg−1, where B ∈ g, g ∈ G.



Co-Adjoint Representation
Dual to Adjoint One

g∗—dual space to the Lie algebra g. It produces characters on
one-dimensional subgroups of G by:

χF(e
tX) = e2πit〈X,F〉, X ∈ g, F ∈ g∗. (40)

〈A,B〉 = tr(AB)—a bilinear form on Matn(R) invariant under matrix
conjugation A→ C−1AC.

g⊥—the orthogonal complement of g∗ in Matn(R) with respect to 〈·, ·〉.
Then Matn(R)/g⊥ serves as a model for g∗.

p— the orthogonal projection of Matn(R) on g∗ parallel to g⊥.

Then the co-adjoint representation K of G, which is dual to the adjoint
representation defined above, can be written in the simple form

K(g) : F 7→ p(gFg−1), where F ∈ g∗, g ∈ G.

Under the co-adjoint representation g∗ is split into a family of disjoint
orbits, giving the name orbit method by Kirillov. For F1 and F2 in one
orbit characters χF1 and χF2 (40) induce equivalent representations of G.



Co-Adjoint Representation
For the Heisenberg group

Realising H1 as a matrix group, we calculate the matrix conjugation:

g =

1 x s+ 1
2xy

0 1 y

0 0 1

 ∈ H1, B =

0 x ′ s ′

0 0 y ′

0 0 0

 ∈ h1,

Ad(g)B =

0 x ′ −x ′y+ xy ′ + s ′

0 0 y ′

0 0 0

 ,

s ′′x ′′
y ′′

 =

1 −y x

0 1 0
0 0 1

s ′x ′
y ′


We introduce coordinates ( h,q,p) in h∗n ∼ R2n+1 in bi-orthonormal
coordinates to the exponential ones (s, x,y) on hn. Then the co-adjoint
representation Ad∗ : h∗n → h∗n becomes:

Ad∗(s, x,y) : ( h,q,p) 7→ ( h,q−  hy,p+  hx), where (s, x,y) ∈ Hn (41)

Note, that every (0,q,p) is fixed. Also all hyperplanes  h = const 6= 0 are
orbits, thus characters ( h,q,p) induce representation equivalent to (32),
(33) and (34) induced from ( h, 0, 0).



Orbit Space

h < 0

q

p

R 2nh = 0

h

The adjoint space h∗n of the algebra hn

h > 0

q

p

The unitary dual of Hn

Phase space (h = 0)

Parameter h 6= 0

R 2n

Figure: The structure of unitary dual to Hn from the method of orbits. The
space h∗n is sliced into “horizontal” hyperplanes. Planes with  h 6= 0 form single
orbits and correspond to different classes of UIR. The plane  h = 0 is a family of
one-point orbits (0,q,p), which produce one-dimensional representations. The
topology on the dual object is the factor topology inherited from the h∗n.



Physical Units
shall not be neglected

Let M be a unit of mass, L—of length, T—of time. We adopt the
following

Convention 21.

1 Only physical quantities of the same dimension can be added or
subtracted. However, any quantities can be multiplied/divided.

2 Therefore, mathematical functions, e.g. exp(u) = 1 + u+ u2/2! + . . .
or sin(u), can be constructed out of a dimensionless number u only.
Thus, Fourier dual variables, say x and q, should posses reciprocal
dimensions to enter the expression e2πixq.

3 For physical reasons being seen later, we assign to x and y
components of (s, x,y) physical units 1/L and T/(LM) respectively.

Consequently, the parameter s should be measured in T/(L2M)—the
product of units of x and y. The coordinates  h, q, p should have units of
an action ML2/T , coordinates L, and momenta LM/T , respectively.



Induced Representation
and physical units

We now build induced representations generated by the coadjoint orbits.
Starting from the action (41) on an orbit  h 6= 0 and the character e−2πi hs

of the centre we obtain the representation:

ρ h(s, x,y) : f(q,p) 7→ e−πi(2 hs+qx+py)f (q−  hy,p+  hx) . (42)

The same formula is obtained if we use the Fourier transform
(x ′,y ′)→ (q,p) for the representation (32). Note that the
representation (42) obeys our agreement on physical units, if (q,p) is
treated as a point of the phase space.
Similarly, we can apply the Fourier transform x ′ → q for the
representation (34) and obtain another form of the Schrödinger
representation :

[ρ h(s, x,y)f ](q) = e
πi h(−2s+xy)−2πixq f(q+  hy). (43)

The variable q is treated here as the coordinate on the configurational
space of a particle.



Derivation of Representations
Let ρ be a representation of a Lie group G with the Lie algebra g. For
any X ∈ g and real t we have exp(tX) ∈ G. Recall, these elements form a
semigroup: exp((t+ s)X) = exp(tX) exp(sX).
For a representation ρ of G in a space V we obtain one-parameter
semigroup of operators ρ(exp(tX)) on V. Its generato is:

dρX :=
dρ(etX)

dt

∣∣∣∣
t=0

. (44)

Even for a bounded representation ρ the above operator may be
unbounded and we need to define its domain as a proper subspace
U ⊂ V. In this way obtain the derived representation of the Lie algebra g.

Example 1.

1 Let G = (R,+), V = C, ρ(x) = eiax, a ∈ R. The derived
representation is dρT = iaT for T ∈ r ∼ R.

2 Let G = (R,+), V = L2(R), [ρ(x)f](t) = f(x+ t) then dρT = T ddx .
As the domain we can take the Schwartz space S(R).



Covariant Transform

Definition 22.
Let ρ be a representation of a group G in a space V and F be an operator
from V to a space U. We define a covariant transform (CT) W from V to
the space L(G,U) of U-valued functions on G by the formula:

W : v 7→ ṽ(g) = F(ρ(g−1)v), v ∈ V, g ∈ G. (45)

Operator F will be called fiducial operator in this context.

1 We do not require that fiducial operator F shall be linear. Sometimes
the positive homogeneity, i.e. F(tv) = tF(v) for t > 0, alone can be
already sufficient.

2 Usefulness of the covariant transform is in the reverse proportion to
the dimensionality of the space U. The simplest situation
(unattainable sometimes) is dimU = 1.



Intertwining Property
of the covariant transform

Theorem 23.
The covariant transform intertwines ρ and the left regular representation
Λ:

Wρ(g) = Λ(g)W. (46)

Here Λ on L(G,U) is defined as usual by: Λ(g) : f(h) 7→ f(g−1h).

Proof.
This is a simple calculation:

[W(ρ(g)v)](h) = F(ρ(h−1)ρ(g)v)

= F(ρ((g−1h)−1)v)

= [Wv](g−1h)

= Λ(g)[Wv](h).



Wavelet Transform
from a linear functional

The following example represents the most developed case of covariant
transform with many important realisation.

Example 2.

Let V be a Hilbert space and ρ be a unitary representation of a group G
in the space V. Let F : V → C be a functional v 7→ 〈v, v0〉 defined by a
vector v0 ∈ V.
Then the CT is the well-known expression for a wavelet transform:

W : v 7→ ṽ(g) =
〈
ρ(g−1)v, v0

〉
= 〈v, ρ(g)v0〉 , v ∈ V, g ∈ G. (47)

The wavelet transforms maps abstract vectors to scalar-valued functions
on the group G.
The family of vectors vg = ρ(g)v0 is called wavelets or coherent states. In
this case we obtain scalar valued functions on G.



Wavelet Transform
The most popular example

Example 3 (The affine group wavelets).

Let G = Aff be the “ax+ b” (or affine) group: the set of points (a,b),
a ∈ R+, b ∈ R in the upper half-plane with the group law:

(a,b) ∗ (a ′,b ′) = (aa ′,ab ′ + b) (48)

Its isometric representation on V = Lp(R) is given by the formula:

[ρp(g) f](x) = a
1
p f (ax+ b) , where g−1 = (a,b). (49)

For a mother wavelet φ(x) the wavelet transform is:

[Wf](a,b) = a
1
2

∫
R
f(x)φ (ax+ b) dx.

Various oscillating mother wavelets are considered in signal processing,
oftenly with a compact support.
Also, for the (inadmissible) mother wavelet φ(x) = 1/(x+ i) the covariant
transform (45) is the Cauchy integral on the real line.



Wavelet Transform
The Fock–Segal–Bargmann (FSB) transform

Consider G = H1 and its Schrödinger representation (34). Then for a
mother wavelet v0 the wavelet transform becomes:

[Wf](s, x,y) =

∫
R
f(x ′) exp(−2πi h(−s+ yx ′ − 1

2xy)) v̄0(x
′ − x)dx ′. (50)

The very important example of a mother wavelet is the Gaussian
v0(x) = e

−π hx2 . The choice will become clear later due to the connection
with the harmonic oscillator and its analytic properties. Then the wavelet
transform (50) becomes the celebrated Fock–Segal–Bargmann transform:

[Wf](s, x,y) =

∫
R
f(x ′) e−π h(i(−2s+2yx ′−xy)+(x ′−x)2) dx ′. (51)

As we can see the influence of the group centre is very trivial here, this
can be addressed as follows.



Induced Covariant Transform
from eigenvectors

The choice of a mother wavelet or fiducial operator F for the covariant
transform (45) can significantly influence the behaviour of the covariant
transform. Let G be a group and H̃ be its closed subgroup with the
corresponding homogeneous space X = G/H̃.

Definition 24.
Let χ be a representation of the subgroup H̃ in a space U and F : V → U

be an intertwining operator between χ and the representation ρ:

F(ρ(h)v) = F(v)χ(h), for all h ∈ H̃, v ∈ V. (52)

Then the covariant transform (45) generated by F is called the induced
covariant transform.

The special case of an induced covariant transform, which is explained
below, is known as Gilmore–Perelomov coherent states.



Induced Wavelet Transform
and induced representations

Example 4.

Consider the traditional wavelet transform as outlined in Ex. 2. Chose a
vacuum vector v0 to be a joint eigenvector for all operators ρ(h), h ∈ H̃,
that is ρ(h)v0 = χ(h)v0, where χ(h) is a complex number depending of h.
Then χ is obviously a character of H̃.
The image of wavelet transform (47) with such a mother wavelet will
have a property:

ṽ(gh) = 〈v, ρ(gh)v0〉 = 〈v, ρ(g)χ(h)v0〉 = χ̄(h)ṽ(g). (53)

Proposition 25.

1 The image of induced wavelet transform W consist of functions with
the property ṽ(gh) = χ(h)ṽ(g).

2 Thus, W intertwines ρ with a representation induced by the
character χ of H̃.



Induced Wavelet Transform
on the Heisenberg group

The induced wavelet transform is uniquely defined by cosets on the
homogeneous space G/H̃. Thus for a fixed section s : G/H̃→ G it is
enough to take wavelets vx = ρ(x)v0 parametrised by points of the
homogeneous space x ∈ G/H̃:

W : v 7→ ṽ(x) = [Wv](x) =
〈
ρ(x−1)v,w0

〉
= 〈v, ρ(x)w0〉 . (54)

We consider the representation ρ h induced by the character
χ h(s, 0, 0) = e2πi hs of the centre Z. Any vector is eigenvector for
ρ h(s, 0, 0) since it is a multiplication operator. The associated section
s(x,y) = (0, x,y).
Explicitly, in the induced form of (51) gives the Fock–Segal–Bargmann
transform:

[Wf](x,y) =

∫
R
f(x ′) e−π h(i(2yx ′−xy)+(x ′−x)2) dx ′. (55)



Contravariant Transform

Definition 26.
Let G, H, X = G/H and ρ on B be as before. For b0 ∈ B, called the
reconstruction vector, the contravariant transform M = Mb0 from F(X) to
B is defined by:

Mb0 [f(x)] =

∫
X

f(x)bx dµ(x) =

∫
X

f(x)ρ(x)dµ(x)b0 = ρ(f)b0. (56)

Proposition 27.

M intertwines representations Λ on F(X) and ρ on B:
MΛ(g) = ρ(g)M.Thus the image M(F(X)) ⊂ B of a left-invariant
subspace F(X) under M is invariant under the representation ρ.

Theorem 28.
The operator P = MW : B→ B is a projection of B to its linear subspace
for which b0 is cyclic. Particularly, if ρ is an irreducible representation
then the contravariant transform M is a left inverse operator on B for the
wavelet transform W: MW = cI (up to a constant c).



Quantum Mechanics
a mathematical model

Avoiding a talk on the experimental framework and interpretations, we
adopt the following set-up of quantum mechanics (QM):
• A physical system is described by a state, which can vary over the

time. In QM states are provided by vectors in a Hilbert space H
with the unit norm.
• Our measurements on a state of physical system are never precise,

even for a classical system. A particular quantum observable is
associated with a self-adjoint operator on H. For a state φ ∈ H an
observable A produces a probability distribution with the
expectation value 〈Aφ,φ〉, which is a real number.
• Let Ā = 〈Aφ,φ〉 be the expectation value. The dispersion of A on φ:

∆2
φ(A) =

〈
(A− Ā)2φ,φ

〉
=
〈
(A− Ā)φ, (A− Ā)φ

〉
=
∥∥(A− Ā)φ

∥∥2
. (57)

Example 5 (Eigenvectors and eigenvalues).

Let φ be an eigenvector of A with the eigenvalue λ. Then λ is the
expectation value of A on φ with zero dispersion.



The Schrödinger Model
and the Heisenberg group

Since all separable infinite-dimensional Hilbert spaces are isometrically
isomorphic, all of them provides essentially the same realisation of QM.
However some models have definite advantages.

Example 6 (The coordinate observable).

Consider the case of H = L2(R) as QM model of a particle on a line.
Assuming that |f(q)|2 provides a probability distribution to find a
particle at certain location, then the observable M = qI produces

〈Mf, f〉 =
∫
R
qf(q) f̄(q)dq =

∫
R
q |f(q)|2 dq (58)

the average value of such distribution. Consider the action (43) of the
subgroup {(0, x, 0)} of Hn and the respective derived representation:

[ρ h(0, x, 0)f](q) = e−2πixq f(q), [dρX hf](q) = −2πiqf(q). (59)

Thus M = i
2πdρ

X
 h.



The Schrödinger Model
momentum observable

In classical mechanics a particle is completely characterised by a point of
phase space (q,p), where q corresponds to a position in the configuration
space and p—the momentum. The momentum is proportional to
velocity—the rate of change of the coordinate q.

Example 7 (momentum observable).

Consider again the Schrödinger representation of the subgroup {(0, 0,y)}
in Hn and its derived form:

[ρ h(0, 0,y)f](q) = f(q+  hy), [dρY hf](q) =  h
d

dq
f(q). (60)

So it produces the shift in configuration space and we associate the
self-adjoint operator D = i h ddq = idρY h produces the expectation of
momentum observables. Two operators M and D comes from the derived
representation of the Lie algebra hn and

[M,D] = −
1

2π
[dρX h,dρY h] = −

1

2π
dρS h = −

−2πi h

2π
I = i hI. (61)



The Uncertainty Relation
and commutator

Theorem 29 (The Uncertainty relation).

If A and B are self-adjoint operators on H, then

‖(A− a)u‖ ‖(B− b)u‖ > 1
2 |〈(AB− BA)u,u〉| , (62)

for any u ∈ H from the domains of AB and BA and a, b ∈ R. Equality
holds precisely when u is a solution of ((A− a) + ir(B− b))u = 0, r ∈ R.
So, only commuting observables have exact simultaneous measurements.

Proof.
〈(AB− BA)u,u〉 = 〈((A− a)(B− b) − (B− b)(A− a))u,u〉

= 〈(B− b)u, (A− a)u〉− 〈(A− a)u, (B− b)u〉
= 2i= 〈(B− b)u, (A− a)u〉 (63)

Then by the Cauchy–Schwartz inequality:
1
2 〈(AB− BA)u,u〉 6 |〈(B− b)u, (A− a)u〉| 6 ‖(B− b)u‖ ‖(A− a)u‖ .



Heisenberg–Kennard relation
for coordinates and momentum

Corollary 30 (Heisenberg–Kennard uncertainty relation).

For the coordinate M and momentum D observables we have the
Heisenberg–Kennard uncertainty relation:

∆φ(M) · ∆φ(D) >
 h

2
. (64)

The equality holds iff φ(q) = e−cq
2
, c ∈ R+ in the Schrödinger model.

Proof.
The relations follows from the commutator [M,D] = i hI, which, in turn,
is the representation of the Lie algebra commutator in hn. The minimal
uncertainty state in the Schrodinger representation is a solution of the
differential equation: (M− irD)φ = 0, or, explicitly:

(M− irD)φ =

(
q+ r h

d

dq

)
φ(q) = 0. (65)

The solution is φ(q) = e−cq
2
, c = 1

2r h . For c > 0 it is in L2(R).

http://www.scientificamerican.com/article.cfm?id=heisenbergs-uncertainty-principle-is-not-dead


The Gaussian
and the related coherent states

The Gaussian φ(q) = e−πq
2
, which minimises the uncertainty of the

coordinate and momentum is a perfect mother wavelet. The respective
coherent states, very important in quantum optics, cf. (43):

φx,y(q) = [ρ h(x,y)φ](q) = e
−πi hxy−2πixq e−π(q+

 hy)2 . (66)

The expectation value of coordinates is  hy and the expectation value of
the moment is x. The corresponding induced wavelet transform is the
Fock–Segal–Bargmann transform (51).

y
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x

1

e−x2/2

Figure: Shifted Gaussian



The Gaussian
and the Gabor functions

The larger set of wavelets, known as Gabor functions, is obtained if we
add scaling (the automorphism of Hn) and apply the action of the full
Schrödinger group (18):

φδ,x,y(q) = [ρ h(x,y)φ](q) = e
−πi hxy−2πixq e−δπ(q+

 hy)2 (67)

y
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e−x2/2

Figure: Scaled Gaussian



The Right Regular Representation
and the action on the mother wavelet

Proposition 31.

Let G be a Lie group and ρ be a representation of G in a space V. Let
[Wf](g) = F(ρ(g−1)f) be a covariant transform defined by the fiducial
operator F : V → U. Then the right shift [Wf](gg ′) by g ′ is the covariant
transform [W ′f](g) = F ′(ρ(g−1)f)] defined by the fiducial operator
F ′ = F ◦ ρ(g−1).

In other words the covariant transform intertwines right shifts on the
group G with the associated action ρB on fiducial operators.

Example 8 (Wavelet transform).

Let the fiducial operator F(f) = 〈f,φ〉 is defined by the mother wavelet φ
and the wavelet transform is [Wφf](g) = 〈f, ρ(g)φ〉. Then the
proposition tells that the right shifts R on the group G are intertwined
with the representation ρ on the mother wavelets:

R(g) ◦Wφ = Wρ(g)φ. (68)



Uncertainty and Analyticity

Corollary 32 (Analyticity of the wavelet transform).

Let dρB be the derived representation of a Lie algebra g on fiducial
operators. Let a fiducial operator F be a null-solution, i.e. AF = 0, for the

operator A =
∑
j ajdρ

Xj
B , where Xj ∈ g and aj are constants. Then the

covariant transform f̃(g) = F(ρ(g−1)f) for any f satisfies:

Df̃(g) = 0, where D =
∑
j

ājL
Xj .

LXj are the left invariant fields (Lie derivatives) on G produced by Xj.

Example 9 (Gaussian and Fock–Segal–Bargmann trans.).

The Gaussian φ(x) = e−πx
2

is a null-solution of the operator M− i
hD,

which insures, that it minimises the uncertainty for operator M and D,
see Thm. 29. Therefore, the Fock–Segal–Bargmann transform generated
by φ as mother wavelet consists of null-solutions of the operator
LM + i

hL
D, which is related to the Cauchy–Riemann operator.



Fundamental properties
of the Schrödinger representation

Proposition 33.

The Schrödinger representation (43) is unitary on L2(Rn):
[ρ h(s, x,y)f ](q) = e

−πi h(2s+xy)−2πixq f(q+  hy).

Proof.

It is obvious for shifts and multiplications separately.

Proposition 34.

The Schrödinger representation is irreducible.
Proof.
We show that the only operators commuting with all ρ h(s, x,y) are
multiples of the identity. Operators of multiplication ρ h(0, 0,y) separate
points, thus any operator commuting with them is an operator of
multiplication by a function. Shifts ρ h(0, x, 0) act transitively on the real
line, thus only multiplications by a constant commute with all shifts.



Fourier Transform
and the Schrödinger representation

Recall, the symplectic transform ι : (s, x,y) 7→ (s,y,−x) is an outer
automorphism of the Heisenberg group. For a group G, composition of a
representation of G with an automorphism of G is again a representation
of G. In the case of Schrödinger representation (34) the composition with
ι produces:

[ρι h(s, x,y)f](y
′) = e2πi h(−s−xy ′+ 1

2xy) f(y ′ − y). (69)

Let F be the Fourier transform:

F : f(x) 7→ f̂(y) =

∫
Rn
e−2πi hxy f(x)dx. (70)

Checking the action of the Fourier transform on operators of shifts
ρ h(0, x, 0) and multiplication ρ h(0, 0,y), we see that F intertwine two
representations: Fρ h(s, x,y) = ρ

ι
 h(s, x,y)F.

Furthermore, because ι2 : (s, x,y) 7→ (s,−x,−y) we obtain that
F2 = R : f(x) 7→ f(−x), thus F−1 = R ◦ F.



Fock–Segal–Bargmann Transform
the induced wavelet transform and the Gaussian

Consider G = H1 and its Schrödinger representation ρ (43). Since the
centre Z of H1 acts with multiplication by scalars we consider the induced
wavelet transform for H1/Z ∼ R2. The very important example of a

mother wavelet is the Gaussian φ(q) = 2
1
4 e−πq

2
, which produces the

celebrated Fock–Segal–Bargmann (FSB) transform L2(R)→ L2(R2):

[Wf](x,y) = 〈f, ρ(x,y)φ〉 = 2
1
4

∫
R
f(x ′) eπiy(x−2x ′)−π(x ′−x)2 dx ′. (71)

It intertwines ρ with the following action of H1 on L2(R2), cf. (32):

[ρ̃(s ′, x ′,y ′)f](x,y) = e2πi(−s ′− 1
2ω(x ′,y ′;x,y))f(x− x ′,y− y ′). (72)

The derived action is:

dρ̃S = −2πi, dρ̃X = −πiy− ∂x, dρ̃Y = πix− ∂y. (73)

A representation of the Heisenberg commutator: [dρ̃X,dρ̃Y ] = dρ̃S.



Fock–Segal–Bargmann Space
uncertainty and analyticity

The Gaussian φ(x) = e−πx
2

is a null-solution of the operator
dρX + idρY = −∂x − 2πx, which insures, that it minimises the
uncertainty for operator M and D, see Thm. 29. Therefore by Cor. 32,
the Fock–Segal–Bargmann transform generated by φ as mother wavelet
consists of null-solutions of the operator

LX−iLY = −πiy+∂x−i(πix+∂y) = (∂x−i∂y)+π(x−iy) = ∂z+πz̄, (74)

where z = x+ iy.
If we define the peeling map P : f(x,y) 7→ e(π/2)(x2+y2)f(x,y), then image
of PW—wavelet transform and peeled—is the null solution of the
operator ∂z. By a move to the complex conjugate coordinates we can get
the Cauchy–Riemann operator. This is Fock–Segal–Bargmann transform
in the classic sense and its image consists of analytic functions on the
complex plane which are square-integrable with respect to the measure

e−π|z|
2

dz.



The Fourier–Wigner Transform
the duality in the wavelet transform

For the Schrödinger representation of the Heisenberg group the wavelet
transform (47) can be written as follows:

[Wφf](x,y) = 〈f, ρ h(x,y)φ〉 (75)

=

∫
R
f(x ′) e−2πi h(yx ′− 1

2xy) φ̄(x ′ − x)dx ′

=

∫
R
e−2πi hy(x ′− 1

2x) f(x ′) φ̄(x ′ − x)dx ′

=

∫
R
e−2πi hyx ′′ f(x ′′ + 1

2x) φ̄(x
′′ − 1

2x)dx
′′.

It is known as the Fourier–Wigner transform. It is a composition of
measure preserving change of variables (x ′′, x) 7→ (x ′′ + 1

2x, x
′′ − 1

2x) and
the Fourier transform x ′′ 7→ y. Thus, it is unitary on L2(R2) space and
preserves the Schwartz space.



Contravariant transform
is indeed the inverse

Corollary 35.

For the wavelet transform Wφ with the mother wavelet φ ∈ L2(R) and
the contravariant transform Mψ ∈ L2(R) with the reconstruction vector ψ
we have the relation:

Mψ(Wφf) = 〈ψ,φ〉 f, (76)

for all f ∈ L2(R). In other words: Mψ ◦Wφ = 〈ψ,φ〉 I.
Proof.
For an arbitrary g ∈ L2(R) take the inner product:〈

Mψ(Wφf),g
〉

=

〈∫
R2

Wφf(x,y)ρ h(x,y)dxdyψ,g

〉
=

∫
R2

Wφf(x,y) 〈ρ h(x,y)ψ,g〉 dxdy

=
〈
Wφf,Wψg

〉
= 〈f,g〉 〈ψ,φ〉 .

whence the result is immediate.



Ladder Operators
and the Hermite functions

Consider complexification of the Weyl algebra h1 and define operators:

a± =
1

2
(X∓ iY), then [a+,a−] =

1

4
[X− iY,X+ iY] =

i

2
S. (77)

Thus in the Schrödinger representation [dρa
+

,dρa
−
] = πI. As we already

know dρa
−
φ = 0 and we define um = (dρa

+
)mφ. Then:

1 (dρa
−
)∗ = dρa

+
on L2(R).

2 dρa
−
um = −πmum−1, because dρa

−
um = dρa

−
dρa

+
um−1 =

πum−1 + dρ
a+
dρa

−
um−1 = −π(1 + (m− 1))um−1 (induction!).

3 〈un,um〉 =
〈
(dρa

+
)nφ, (dρa

+
)mφ

〉
=
〈
(dρa

−
)m (dρa

+
)nφ,φ

〉
=

0, n < m. Also 〈um,um〉 = πmm!.

4 The Hermite functions φm = (πmm!)−1/2(dρa
+
)mφ make an

orthonormal system.

5 (dρa
−
)φm = −(πm)1/2φm−1, (dρa

+
)φm = (π(m+ 1))1/2φm+1,

dρa
−
dρa

+
φm = −π(m+ 1)φm, dρa

+
dρa

−
φm = −πmφm.



Ladder Operators
in FSB space

From the derived form (73) we calculate

dρ̃a
±
=

1

2
(dρ̃X ∓ idρ̃Y) =

1

2
(−πiy− ∂x ∓ i(πix− ∂y)). (78)

Thus dρ̃a
+
= 1

2(−∂z + πz̄) and dρ̃a
+
= −1

2(∂z̄ + πz).

Because W intertwines ρ with ρ̃ and dρa
−
φ = 0 , the function Φ = Wφφ

is the null solution of dρ̃a
−

or ∂z̄ + πz. Since, it is also the null solution
of La

−
= ∂z + πz̄ it is a multiple of e−πzz̄.

Define Φm = (πmm!)−1/2(dρ̃a
+
)mΦ = Wφφm, then we will have the

above orthonormality identities for φm by the intertwining property of
W.
Moreover, Φm(z) = (πm/m!)1/2z̄me−π|z|

2

.
The name ladder operators is explained by the diagram:

Φ0
a+
// Φ1

a−
oo

a+
// Φ2

a−
oo

a+
// Φ3

a−
oo

a+
// . . .

a−
oo

An existence of vacuum Φ0 implies the Stone-von Neumann theorem.



Ladder Operators
and quantum harmonic oscillator

We obtain the Hermite operator as

H = a+a− + a−a+ = 2a+a− −
i

2
S =

1

2
(X2 + Y2) (79)

It is also the Hamiltonian of the harmonic oscillator.
Using identities in 5 we see

dρHφm = −π(2m+ 1)φm, dρ̃HΦm = −π(2m+ 1)Φm.

1 The spectrum of the harmonic oscillator is discrete.
2 The eigenfunctions are provided by the Hermite functions in the

Schrödinger model or by the powers of z̄ in the FSB spaces.
3 The ladder operators acts on the spectrum due to the following

commutation relations [H,a±] = 2a±:

H(a+φk) = (a+H+ 2a+)φk = a+(Hφk) + 2a+φk

= (2k+ 1)a+φk + 2a+φk = (2k+ 3)a+φk.

4 The harmonic oscillator’s dynamics in FSB space is geometric
rotation: At : f(z) 7→ eit f(e2itz).
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